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ABSTRACT
Heme oxygenase‐1 (HMOX1) is a ubiquitously expressed inducible enzyme that degrades heme to carbon monoxide, biliverdin, and free iron
ions. Since 1950, many studies have revealed the role of HMOX1 in reducing the impact of oxidative stress in many types of diseases, such as
Alzheimer0s disease, heart disease, and the development of tumors. These effects arise as a result of the removal of heme, the biological activities
of the products of HMOX1 and the activity of HMOX1 itself. However, HMOX1 has some contradictory effects. The discovery of microRNAs
(miRNAs) and their relationship with HMOX1 has provided a new direction for research in this field. Here, we discuss the role of a potential
regulatory feedback loop between HMOX1 and miRNAs in pathological processes based on recently published data. We hope to describe a new
mechanism for HMOX1 function based on miRNAs to address the contradictory results reported in the literature. J. Cell. Biochem. 114: 2637–
2642, 2013. � 2013 Wiley Periodicals, Inc.
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Heme oxygenase‐1 (HMOX1) is an inducible enzyme that is
responsible for the degradation of heme to biliverdin, carbon

monoxide (CO), and ferrous iron. HMOX1 expression is up‐regulated
in response to cellular stress and by pro‐oxidative stimuli, such as
heme, UV light, LPS (lipopolysaccharide), hydrogen peroxide, cobalt
protoporphyrin, heat shock, heavy metals, pro‐inflammatory cyto-
kines, NO, ethanol, and prostaglandins [Jozkowicz et al., 2007].
HMOX1 serves a wide variety of functions in cells that frequently
extend beyond substrate catabolism. Multiple studies have indicated
that the products of HMOX1 and the protein itself are involved in
nerve degenerative disease, heart disease, kidney disease, and tumor

biology [Zhao et al., 2012]. A large body of evidence indicates that
HMOX1 serves protective roles based on anti‐oxidation, anti‐
apoptosis, and anti‐inflammatory activities [Gong et al., 2012;
Hamedi‐Asl et al., 2012]. However, some contradictory effects have
been reported, such as pro‐apoptosis and pro‐inflammatory effects
[Mizuno et al., 2005; Hayama et al., 2011]. The role of HMOX1 in
tumor development is highly debated [Boschetto et al., 2008; Tsai
et al., 2012]. These controversial findings suggested that there may be
unidentified mechanisms or regulatory factors involved in HMOX1
function. Recent studies have shown the existence of HMOX1 in the
nuclei and mitochondria [Bindu et al., 2011; Gandini et al., 2012].
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These data suggest that HMOX1 or its products might play a role in
the regulation of gene expression at the transcriptional level and
cellular aerobic oxidation.

MicroRNAs (miRNAs) are small, non‐coding RNAs that base‐pair
with specific mRNAs and inhibit translation or promote mRNA
degradation. miRNAs control gene expression by binding to their
target mRNA UTR, ORF, CDS, or even the target protein [Tay
et al., 2008; Eiring et al., 2010; Qin et al., 2010]. Several studies have
shown that miRNAs may regulate the expression of HMOX1, or
HMOX1 may regulate the amount of miRNA directly or indirectly
(Table I). These findings may provide a new avenue for the
investigation of the roles of HMOX1.

Based on recent data on miRNAs and HMOX1, a regulatory
feedback network between HMOX1 andmiRNAs may exist that plays
a crucial role in cells (Fig. 1).

MICRORNAs–HMOX1 FEEDBACK LOOP

As is mentioned above, it is possible that HMOX1 may be a target of
miRNAs, which is supported by experimental evidence. The question
arises of whether miRNAs are mediated by HMOX1 and play a key
role in enhancing or attenuating HMOX1 function. In the previous
studies, contradictory results regarding the consequences of miRNAs
on the function of HMOX1 have been reported. We hypothesize that
some type of balance between HMOX1 and miRNAs expression has
been overlooked and may contribute to the contradictory effects. The
mechanism of the feedback between miRNAs and the targeted genes
is being gradually revealed.

Therefore, the regulation of HMOX1 expression and the function
by miRNAs is an important area of study. miRNAs are even more
important as regulatory molecules for controling gene expression at
the posttranscriptional level in response to stress.

THE EXPRESSION OF HMOX1 MAY BE REGULATED BY miRNAs
microRNAs are very important regulators of gene expression. We
observed that HMOX1 could be a potential target of many miRNAs
based on a bioinformatic prediction. The known functions of these
miRNAs are listed in the Table I. Recent studies showed that miRNAs
regulated HMOX1 expression directly or indirectly (Table II). These
data revealed that the expression of HMOX1 could be regulated by
miRNAs at the posttranscriptional level.

On the other hand, HMOX1 could be regulated by miRNAs at the
transcriptional level. The promotor of the HMOX1 gene has an
antioxidant‐response element (ARE), which can bind the transcription
factor Nrf2 to promote transcription. Furthermore, the transcription
factor BACH1 can competitively bind to the ARE with Nrf2, inhibiting
transcription. Studies have shown that miR‐155 efficiently inhibited
BACH1 protein translation, resulting in a concentration‐dependent
increase in HMOX1 mRNA and protein expression in human umbilical
vein endothelial cells [Pulkkinen et al., 2011]. The let‐7 miRNA
enhances the expression of HMOX1 by suppressing Bach1 in human
hepatocytes [Hou et al., 2012]. Moreover, miRNAswere reported to bind
the promoter region to regulate gene transcription [Younger and
Corey, 2011]. It is possible that some miRNAs bind to the promoter
region of the HMOX1 gene because of the polymorphism in the
promoter of the HMOX1 gene. TA
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HMOX1 REGULATED miRNAs EXPRESSION
HMOX1 substrate may regulate miRNA expression. Heme is the
substrate of the HMOX1 enzyme. DGCR8, a heme‐binding protein, is
necessary for miRNA processing [Faller et al., 2007]. DGCR8, along
with the RNase Drosha, cleaves pri‐miRNAs into pre‐miRNAs in the
process of miRNA biosynthesis. Finally, the expression of the mature
miRNA may be altered.
HMOX1 products may regulate miRNAs expression. HMOX1
expression is altered under stress, and its function may also change
as a result of its products. Evidence suggested that carbon monoxide
down‐regulated the expression of miR‐710 in colonic myofibroblast
cells treated with CORM (supplied by the CO‐releasing molecule)
[Uchiyama et al., 2010]. Cytosolic iron could regulate the activity of
the miRNA pathway through poly(C)‐binding protein 2 (PCBP2),
which is associated with Dicer and promotes the processing of miRNA
precursors [Li et al., 2012].

HMOX1 interferes miRNA target pools that regulate miRNAs. A
single miRNA can regulate multiple target genes, which could be
referred to as “target pools.” It has been reported that the target
abundance could affect the role of miRNAs in the cells [Arvey
et al., 2010]. Therefore, the HMOX1mRNA abundance could interfere
with the “target pools” of miRNAs, diluting the miRNAs activity.
The cellular localization of HMOX1 suggests that it may regulate
miRNA expression directly. Investigations of the transcription level
of miRNAs have been initiated. The data showed that the p53 protein
stimulates miR‐107 transcription levels in glioma cells, as miR‐107 is
the transcriptional target of the p53 protein [Chen et al., 2012].
Furthermore, c‐myc transcriptionally represses miR‐23a and miR‐
23b [Gao et al., 2009].

HMOX1 is a 32‐kDa protein that is localized in microsomes [Ryter
et al., 2006]; however, it has also been demonstrated to be present in
the mitochondria and nucleus, which suggests that it may regulate

Fig. 1. 1 Stress promotes HMOX1 expression. 2 HMOX1protein. 3 HMOX1or/and its products control gene expression or cell signaling pathways, and all of the regulated
molecules form pools. 4 HMOX1 exhibits direct or indirect biological functions. 5 Molecular pools regulate miRNA expression by serving as endogenous miRNA sponges or
transcription factors. 6 miRNAs negatively regulate HMOX1 expression.

TABLE II. The Relationship Between HMOX1 and miRNAs Based on Data

PMID Species/cell Treatment Effects miRNA:mRNA pairs

21827279 Mouse C2C12 myoblasts HO‐1 Downregulates Lin28 and DGCR8, myomirs: miR‐1, 133a/b, 206 #
21982894 Human HUVEC TNF‐a TNF"‐(NF‐kB)‐miR‐155"‐Bach1‐HO‐1"
21147878 Human/rat 3T3‐L1 Insulin HO‐1"; miR‐155, 183, 872 #
21106538 Human miR‐217, 377 transfection HO‐1 protein # miR‐217/377:HO‐1
20633528 Human HBV miR‐122 transfection HO‐1# miR‐122:HO‐1
17919492 Human HCV miR‐122 transfection HO‐1# miR‐122:HO‐1
22698995 Human Huh‐7 HepG2 Let‐7 transfection Let‐7—Bach1#‐HO‐1" Anti‐oxidant injury Let‐7:Bach1

JOURNAL OF CELLULAR BIOCHEMISTRY THE BALANCE MEDIATED BY MIRNAS AND THE HEME 2639



gene expression (coding genes or non‐coding genes) at the
transcriptional level as a transcriptional factor. Although it is not a
canonical transcription factor, either HMOX1 itself or its products
may regulate transcription through interaction with other transcrip-
tion factors.

FEEDBACK LOOPS BETWEEN miRNAs AND THEIR TARGET GENES
The concept of feedback loops betweenmiRNAs and their target genes
has been proposed in recent years. The mir‐17‐92 cluster modulates
the translation of the E2F2 and E2F3 mRNAs via binding sites in their
30‐untranslated region, while the endogenous E2F2 and E2F3 directly
bind the promoter of the mir‐17‐92 cluster, activating its transcrip-
tion. It is suggested that there is an autoregulatory feedback loop
between the E2F factors and the mir‐17‐92 cluster [Sylvestre
et al., 2007]. MiR‐9 inhibited the proliferation and promoted the
migration of glioma cells by directly targeting cyclic AMP response
element‐binding protein (CREB). Furthermore, the transcription of
miR‐9‐1 is under CREB0s control, forming a negative feedback mini‐
circuit. Taken together, miR‐9 inhibits proliferation but promotes
migration, whereas CREB plays a pro‐proliferative and anti‐
migratory role, suggesting that the CREB‐miR‐9 negative feedback
mini‐circuit plays a critical role in the decision to “go or grow”
in glioma cells [Tan et al., 2012]. Ectopic miR‐34a induced the
mesenchymal–epithelial‐transition (MET) and down‐regulation of
SNAIL and ZEB1, which was mediated by a conserved miR‐34a/b/c
seed‐matching sequence in the 30‐UTR. Conversely, the transcription
factors SNAIL and ZEB1 were shown to bind to E‐boxes in the miR‐
34a/b/c promoters, thereby repressing miR‐34a and miR‐34b/c
expression [Siemens et al., 2011]. When miRNAs and their targets
exhibit adverse effects, the balance may lead to contradictory results.
The feedback loop between miRNA and HMOX1 may be an indicator
of the complex function of HMOX1.

THE FEEDBACK LOOP BETWEEN MIR‐377 AND HMOX1 IN
RENAL FIBROSIS
Fibrosis involves an excess accumulation of extracellular matrix
(primarily composed of collagen) and usually results in the loss of
function when normal tissue is replaced with scar tissue. The
progressive fibrosis accompanies all chronic renal disease [Hewitson,
2012].

Transforming growth factor‐b (TGF‐b) is a key mediator in a
variety of kidney diseases, including diabetic nephropathy. TGF‐b
exerts its biological functions largely via its downstream complex of
signaling molecules, the Smad proteins. Paradoxically, TGF‐b is also
essential for normal homeostasis and suppression of inflammation.
One feasible mechanism by which TGF‐b may exert its beneficial
properties is through the induction of HMOX1 [Zarjou and
Agarwal, 2012], which is known to be cytoprotective through
its potent antioxidant, anti‐inflammatory, and anti‐apoptotic
properties in different conditions, including several kidney diseases.
Up‐regulation of HMOX1 expression was able to both prevent the
progression of renal tubule‐interstitial fibrosis and to reverse an
established renal fibrosis in animals subjected to unilateral ureteral
obstruction (UUO) [Correa‐Costa et al., 2010].

MiR‐377 was positively regulated by TGF‐b, and elevated glucose
concentrations mimicked diabetic nephropathy in vitro, as well as in

mouse diabetic nephropathy models in vivo. Consistently, up‐
regulation of miR‐377 led to reduced expression of p21‐activated
kinase and superoxide dismutase, which enhanced fibronectin
protein production [Wang et al., 2008]. As fibronectin is a key
matrix protein that accumulates in excess in diabetic nephropathy,
miR‐377 may have a critical role in the pathophysiology of diabetic
nephropathy.

It has been confirmed that miR‐377 can regulate HMOX1
expression [Beckman et al., 2011]. However, it remains to be
determinedwhether HMOX1 is able to regulate the expression ofmiR‐
377. What is the mechanism? Does HMOX1 play a role as a
transcription factor or does it interact with other transcription factor
to regulate miR‐377 expression? Perhaps HMOX1 mRNA molecules
downstream serve as miRNA sponges that regulate miR‐377
expression. However, the details of the mechanism remain unknown.

THE FEEDBACK LOOP BETWEEN MIR‐328 AND HMOX1 IN
MITOCHONDRIA DYSFUNCTION DISEASE
Mitochondria are fundamental to survival and proper functioning of
cells. These organelles play a key role in energy production, in
maintaining homeostatic levels of second messengers (such as
reactive oxygen species and calcium) and in the coordination of
apoptotic cell death [Mayer and Oberbauer, 2003]. Dysfunction of the
mitochondria is involved in a variety of diseases, including
Alzheimer0s disease (AD) [Hauptmann et al., 2009].

AD is characterized by the accumulation of plaques formed of short
b‐amyloid (Ab) peptides in the hippocampal region of the brain. Ab
peptides are produced upon proteolytic cleavage of b‐site APP‐
cleaving enzyme 1 (BACE1), which contributes to the formation of
these plaques [Cai et al., 2012]. Recent evidence suggests that
mitochondrial dysfunction is a common early pathogenic mechanism
in AD, integrating genetic factors related to enhanced Ab production
and tau‐hyperphosphorylation with aging, as the most relevant
sporadic risk factor [Calkins et al., 2012]. Oxidative damage to the
mitochondrial DNA (mtDNA) as a determining event occurs during
aging [Santos et al., 2012], which may cause or potentiate mito-
chondrial dysfunction and favor neurodegenerative events.

Recent evidence showed that miRNAs could regulate mitochon-
drial function. miR‐484 can suppress translation of the mitochondrial
fission protein Fis1 and inhibit Fis1‐mediated fission and apoptosis
during myocardial infarction [Wang et al., 2012]. miR‐494 was
shown to regulate mitochondrial biogenesis in skeletal muscle
through mitochondrial transcription factor A [Yamamoto et al.,
2012]. miR‐499 was shown to regulate mitochondrial dynamics
by targeting calcineurin and dynamin‐related protein‐1, inhibiting
cardiomyocyte apoptosis [Wang et al., 2011].

miR‐328 was shown to be down regulated in AD patients
[Provost, 2010], while HMOX1 protein levels are significantly
increased. Although a high level of HMOX1 was initially proposed
as a neuroprotective system in the brains of AD patients, some groups
proposed the observed increase of HMOX1 in AD brain as a possible
neurotoxic mechanism [Schipper, 2011]. The hypothesis of the feed-
back loop betweenmiR‐328 and HMOX1 allows for the interpretation
of the complex role of HMOX1 in AD. We proposed that miR‐328
could regulate HMOX1 expression at the post‐transcriptional level by
targeting the HMOX1 30UTR and up‐regulating HMOX1 expression,
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promoting its entry into the nucleus or mitochondria. HMOX1 may
serve as a transcription factor or it may interact with other
transcription factors to affect the expression of genes related to
apoptosis. The investigation of these possibilities will give insight into
whether HMOX1 regulates miR‐328 directly or indirectly. Moreover,
the mitochondrial genome includes miRNA and pre‐miRNA coding
sequences, and experiment data have confirmed that many pre‐
miRNAs and mature miRNAs (including miR‐328) in exist in the
human mitochondrial genome [Eric et al., 2011]. There may be some
unidentified interaction or functional relationship between miR‐328
and HMOX1 in the mitochondria.

A similar mechanismmay exist in cancer, which is also a disease of
mitochondrial dysfunction [de Moura et al., 2010]. The tumor
repressors miR‐128, miR‐22, miR‐218, and miR‐328 were shown to
be down‐regulated in many malignant tumors (Table I), and HMOX1
is a potential target of these miRNAs. The balance of miRNAs and
HMOX1 may contribute to the adverse effects of HMOX1 in different
tumors.

CONCLUSION

In summary, the balance between miRNAs and HMOX1 should not be
ignored. This balance is an important component of HMOX1 function
that involves a regulatory feedback loop between miRNA and
HMOX1. However, the feedback loop may be limited by the diversity
of tissues and species. Mitochondrial HO activity has been reported in
the liver of rodents infected with Plasmodium berghei or treated with
the HMOX1 inducer cobalt chloride, but this activity was absent in
ox heart mitochondria [Converso et al., 2006], a discrepancy most
likely explained on the basis of species and/or organ differences. The
mechanism needs to be investigated in a specific context.
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